
Starting a State Government
Open Source Project

Tom Cort <tom.cort@state.vt.us>
Systems Developer II

Vermont Department of Taxes

“Officers of government are trustees and servants of the
people and it is in the public interest to enable any person

to review and criticize their decisions even though such
examination may cause inconvenience or 

embarrassment.” 1 V.S.A. § 315



What is Open Source 
Software?

● Free Redistribution
● Source Code
● Derived Works
● Integrity of The Author's Source Code
● No Discrimination Against Persons or Groups
● No Discrimination Against Fields of Endeavor
● Distribution of License
● License Must Not Be Specific to a Product
● License Must Not Restrict Other Software
● License Must Be Technology-Neutral



What is State Government 
Software?

● Developed and maintained “in house” by one or 
more state agencies or departments

● Developed and maintained by state employees or 
state contractors

● Used by one or more state agencies or depts
● “Owned” by the state (no 3rd party copyright 

agreements or patent claims)
● Development and maintenance funded with public 

money (taxes)



What is the Gateway Project?

● Implements Streamlined Sales Tax web 
services.

● Provides a web interface.
● Provides client applications.
● Designed to be an extensible framework 

upon which future tax software can be 
built.

● Modernized eFile (MeF) coming soon!

● Project Website: http://gateway.sf.net/



Where to begin
● Like IT infrastructure changes, development 

process changes are usually rolled out 
gradually.

● Be realistic about expectations.
● Start out with one project and see how it goes.
● Some people may have never heard of OSS. 

How you handle this will influence how they 
think and feel about open source software.

● Educate everyone on the team about what 
open source is and what it means. See 
ProducingOSS.com for a free eBook.

● Try to get at least one person on the project 
team who has open source experience.

● Be prepared for skepticism and criticism.



What kind of project makes a good 
candidate for open source?

● Not written in a proprietary language like 
VB.net. Do compilers exist for GNU/Linux?

● Does not depend solely on proprietary tools 
like Visual Studio. Can it be developed and 
built with open source tools?

● Does not depend on proprietary libraries. Are 
all the dependencies open source?

● Does not depend on proprietary software to 
run. Are there any closed databases or closed 
apps that are needed to run the software?

● Generally useful. Would at least 3 other 
people find some or all of the software useful?



In the beginning...

● Gateway started out as a closed source 
application.

● Built using open source tools (subversion, 
eclipse, apache axis, saxon, mysql, etc).

● Small development team.
● Rumors that one day the code might be open.



Getting approval vs just do it

● You can either ask management for 
permission to release the code as open source 
software or you can just release it on your 
own and hope no one gets mad or fires you.

● Both ways work!

● Getting formal approval is best for business 
critical applications.

● Just releasing the code is best for “one off” 
projects and patches.

● The gateway was approved by management.



Arguments for the Gateway

● Cost - It takes very little effort and doesn't 
cost the state anything to publish the source 
code, we use a free service called Source 
Forge. If we receive source code contributions 
from outside developers it will actually result 
in a savings because the contributed code is 
code that Vermont didn't have to pay 
developers to write.



Arguments for the Gateway

● To be a good Neighbor - Many states are 
implementing Streamlined Sales Tax and 
other XML-based electronic return systems. 
Sharing the code with fellow states would be a 
nice thing to do because it helps them 
accomplish their goals while reducing their 
costs. Additionally, other Vermont agencies 
and departments could adapt and enhance 
the code to meet their needs.



Arguments for the Gateway

● Education - Vermonters who are studying Java 
software development could learn by studying 
our code. Our code has a lot of interesting 
pieces in it that aren't directly related to taxes 
(our event logging system, authentication 
system, unit test setup, etc). Developers of 
open source software could legally copy and 
use the code in their projects.



Arguments for the Gateway

● Better Software - With more people using our 
code and more developers looking at our 
code, bugs would be more easily spotted and 
fixed. Sharing the code with the transmitters 
who send us data allows them to test changes 
to their software and debug problems more 
easily. They could examine exactly what our 
code does with their input and setup their own 
private testing environment.



Security Concerns

● Open source code means anyone can download, 
inspect, and test your software for security 
vulnerabilities.

● Anyone could help you fix a problem and 
anyone could exploit a problem.

● Both closed source and open source 
applications have security holes that can be 
found and exploited by anyone.

● IMHO, neither methodology is “better” or more 
secure. Always code with security in mind.

● If the software is internet accessible, think about 
what data lives on that server.



Security Disclosure Policy

● Decide on what your security disclosure policy 
will be before you find out about a security 
issue.

● Full Disclosure

● Full Disclosure with Patch

● Staggered Disclosure

● Limited Disclosure

● Silent Fix



Choosing a license

● OpenSource.org
● www.fsf.org/licensing/licenses/index_html

● Read all of the licenses at OpenSource.org
● Figure out what you want the license to do 

(copyleft or not, notice files or not, GPL 
compatible or not, etc).

● Look at what other like software uses for its 
license. (Example, Java usually is Apache 2.0)

● Stop license proliferation, choose an existing 
license that meets your criteria.

● Don’t start a war over the license.



Determine copyright information

● Find out the exact text to use for the 
copyright line.

● Usually the website for your department or 
agency has a copyright message you can 
copy.

● Decide if contributors must assign copyright.



Choosing a development model

● Core team

● Committers and contributors

● Voting/Polling

● Benevolent Dictator

● Define your own?

● Document this for later. It is important that 
external devs know how to submit patches.



Preparing the source code

● Read every line of code.
● Make sure there is a copyright header in every 

source file.
● Make sure no passwords, private keys, host 

names, or other private/semi-private 
information exists in the code.

● Make sure the code looks good (non-vulgar 
comments, indentation, no ugly hacks, etc)

● Tip: use svn:externals in subversion to allow 
you to keep a set of private configuration and 
password files.



Version Numbering

● A lot of numbering schemes exist.
● Single number: udev-115
● Major, Minor: gateway-3.0
● A.B.C[.D]: linux-2.6.22.6

● The exact scheme doesn’t matter
● Pick one that you’ll stick to
● Document the scheme on your download page
● Make it clear what code is production ready 

and what is beta/alpha/rc.



Preparing the documentation

● Must explain what the software is and what it does.
● Must describe how to install and run the software.
● Must explain how to build from source.

● If possible, it should describe the source code 
(javadoc, doxygen).

● Is best with screen shots, commands, and 
examples.



Preparing the website

● You need a website!
● Should include all documentation.
● An FAQ to answer repeat questions.
● A download page so people can get the software.
● Project News so people know what’s happening.
● A project road map so people know what’s going 

to happen.
● A guide for people interested in contributing.
● Links to other project resources (bug tracker, 

continuous integration, mailing lists, svn/cvs).
● A clear point of contact for discussion, getting 

help/support, suggesting features/improvements 
and reporting bugs.



Preparing other services

● IRC – chat room. May not be the best idea for 
state employees to be chatting. See Freenode.net

● Mailing lists. Make sure all project members are 
subscribed and read the incoming mail.

● Source control. Educate all of the developers on 
the best practices and common features. All 
developers should know how to add code, 
remove code, create a patch, apply a patch, 
revert a change, create a branch, merge code 
from two branches, and resolve a merge conflict.

● Wiki. Be careful that it isn’t interpreted as the 
official word of the state. Watch out for spam.



Preparing the first release

● Make sure your copy of the code is up to date.
● Make sure the documentation is up to date.
● Create a source package.
● Optionally create 1 or more binary packages.
● Packages should be in standard formats (no 7z 

please). Windows installer should be .exe or .msi. 
Linux packages should be .rpm, .deb, .ebuild, etc. 
Linux sources should be .tar.gz or .tar.bz2. 
Windows sources should be .zip.

● Test the software packages you just made and 
the documentation before uploading them.



Finding a Project Hosting Provider

● 4 Options: current agency/dept website, self-
managed infrastructure, canned OSS hosting, 
custom OSS hosting.

● current agency/dept website is usually too limited 
or requires too much paper work to get setup.

● self-managed infrastructure requires hardware 
and someone with enough time to maintain it.

● canned hosting is free and gives you complete 
control over everything you need to run a project.

● custom OSS hosting can be hard to get, but its 
much more flexible than the canned stuff.



Free Canned OSS Hosting

● Source Forge - sourceforge.net

● Savannah - savannah.nongnu.org

● Gna! - gna.org

● berliOS - berlios.de



Custom OSS Hosting

● OSU OSL - osuosl.org



Being a good community member

● Report bugs and submit patches to other 
projects.

● Join mailing lists and help people.

● Develop in the open.

● Acknowledge contributors and developers when 
they contribute. Add a note in the change log and 
commit log, thank them by e-mail or on a public 
mailing list, thank users for submitting bug 
reports, etc.



Implementing Open Standards

● A standard exists for just about everything.

● Search for standards before implementing new 
storage or data transfer functionality.

● Choose only open standards.

● Implement all required parts of the standard 
correctly.



Gateway Demo

● Demo Website: gateway-demo.osuosl.org

● Gateway SSTP Client GUI

● SSTPong Plus - http://sstpong.sf.net/


